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Abstract. In previous papers, we introduced the idea of a Virtual Sensor, which is a
mathematical model trained to learn the potentially nonlinear relationships between spectra
for a given image scene for the purpose of predicting values of a subset of those spectra when
only partial measurements have been taken. Such models can be created for a variety of
disciplines including the Earth and Space Sciences as well as engineering domains. These
nonlinear relationships are induced by the physical characteristics of the image scene. In
building a Virtual Sensor a key question that arises is that of characterizing the stability
of the model as the underlying scene changes. For example, the spectral relationships
could change for a given physical location, due to seasonal weather conditions. This paper,
based on a talk given at the American Geophysical Union (2005), discusses the stability
of predictions through time and also demonstrates the use of a Virtual Sensor in making
multi-resolution predictions. In this scenario, a model is trained to learn the nonlinear
relationships between spectra at a low resolution in order to predict the spectra at a high
resolution.

1. Introduction

In recent years, we have been developing the idea of a Virtual Sensor, which is a machine
learning model that has learned the relationships between spectra for a given image scene.
Once these relationships are known, the model can be used to predict values of the spectra
using only a subset of the spectral measurements. This capability can prove to be very useful
for scientific and engineering studies [5, 6, 7]. Related work from other groups include [2, 3]
for both Earth Science and engineering applications.

We begin with a brief discussion of our approach to modeling remote sensing cubes from
Earth observing satellites such as MODIS (Moderate Resolution Imaging Spectroradiome-
ter). For purposes of the discussion presented here, we will model the observed data as a
time series of matrices following the notation in [4]. The spatiotemporal random function
Z(u, λ, t) is modeled as a finite number n of spatially correlated time series with the following
representation: Z(u, λ, t) = [Z(u1, λ, t), Z(u2, λ, t), ..., Z(un, λ, t)]T .

In this equation, u represents the two-dimensional spatial coordinate, λ represents the
vector of measured wavelengths, and t represents time. The superscript T indicates the
transpose operator. If multiple wavelengths are measured, then each Zi is actually a matrix,
and the function Z(u, λ, t) represents a data cube of size (n× Λ× T ), where these symbols
represent the number of spatial locations, the total number of measured wavelengths, and the
total number of time samples, respectively. An image scene U measured at Λ wavelengths
corresponds to one data cube; if the same scene is sampled at T time steps, we get T such
cubes.
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In this notation, the spatial coordinate u represents the coordinates (or index) of a
measurement at a particular location in the field of view. Of course, this is not the only
method available to model such time series. It is possible to model these time series as a set
of temporally correlated spatial random functions, or as a deterministic or stochastic trend
model. Kryiakidis and Journel, 1999 [4] have a more complete discussion of these models,
along with their inter-relationships.

In building a Virtual Sensor, we estimate P (Z(b1, t)|Z(B2, t)) where b1 is the ’target’
wavelength band of the sensor of interest, and B2 is the set of all other measured wavelengths,
with b1 ∩B2 = ∅ and b1 ∪B2 being the entire set of wavelengths that are measured.

Although it is often possible to learn these relationships, the stability of the relationship
through time and the ability of the estimator to generate images at high resolution when
only the low resolution measurements becomes important. In this paper we examine these
two areas. All the studies presented in this paper are based on 18 images taken during the
year 2005 over Fresno CA. We chose this area because of the variability due to moisture and
sunlight that the region experiences over a year. It is admittedly an easier region compared
to deciduous forests where the degree of variation is expected to be much higher. Analysis
of those areas will be discussed in future papers.

2. Assessing the Stability of the Spectral Relationships through Time

For a given spatial region U and time coordinate t0, the spectral information can be
correlated. 1 This correlation is induced by physical characteristics of the image scene. If
those characteristics do not change significantly with time our model should be able to
estimate P (Z(b1, t)|Z(B2, t)) with low error. If, however, the physical characteristics change
significantly through time, the degree of correlation and more generally the interrelationships
between the spectral measurements would change.

The choice of model used to perform the estimation of P (Z(b1, t)|Z(B2, t)) can make
a difference in the overall prediction accuracy. For this study, we use two simple models,
the first being a linear model and the second is an ensemble of bagged feedforward neural
networks [1]. These models are widely available and are useful for benchmarking predictive
models. They span the spectrum of the bias-variance tradeoff due to model complexity.

Figure 1 shows the observed variation in the prediction accuracy for a Virtual Sensor
built with either one or three days worth of training data. The effects of seasonal variation
are highest for the linear model trained with only one day of data. The data taken on
9/26 shows a high degree of variation. Inspection of the data indicates that this is likely
due to a very low spectral reflectance in Channel 6 for that particular day, thus creating
a poor signal to noise ratio. The normalized error shown on this figure was computed as
e = 1

N

∑
i(|yi − ŷi|/yi) for N predictions.

3. Multi-Resolution Predictions

In the previous section we showed how predictive models can yield stable predictions
through time given the appropriate model and training data. In this section we show how
these models can be used to estimate the spectral intensity of a channel at a higher resolution
than available from the sensor itself. In the MODIS instrument, Channel 6 is only available
at 500 m, whereas the channels in the visible part of the spectrum are available at 250

1Although correlation generally implies linear correlation, we use the word to also include potentially
nonlinear relationships.
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Figure 1. This figure shows the stability of model predictions as a function
of 1 day of training data (top panel) and three days of training data (bottom
panel). The box plot shows the variation due to model misspecification as a
function of normalized error for a model built with an ensemble of 50 bagged
neural networks. The diamonds indicate the predictions of a single linear
model. Notice that the seasonal variation is more pronounced for the less-
flexible linear model with one day of training data.

m. In this section, we show how three models: Gaussian process regression, bagged neural
networks, and a linear model perform on this task.

Figure 2 shows the distributions of the input data at 500 m and 250 m resolutions. For
this problem, we cannot compute an error measure between the actual Channel 6 values
at 250 m and the predicted values, since the actual values do not exist at this resolution.
Thus, we instead compare the distances between the distributions of Channel 6 at 500 m
and the estimated distribution of Channel 6 at the 250 m resolution using the symmetric
Kullback-Leibler distance. Since the low resolution measurements can be thought of as an
aggregation of the high resolution measurements, the distributions can not be identical. For
two distributions, p and q, this distance is defined as d =

∑
i pi log(pi/qi) + qi log(qi/pi).

The smaller this distance, the closer the distributions. For these models, the KL distance
is 0.0167± 0.0017, 0.0190± 0.0003, and 0.0260± 0.0000 for the GP, bagged neural network,
and the linear model respectively. The GP thus has the best predictive accuracy according
to this measure and a one-way ANOVA test performed over 50 trials confirms that these
differences are statistically significant with p < 0.001.

4. Implications in the Earth Sciences

The monitoring component of Earth System Science depends on collecting observations
in one of three domains: spatial, temporal and spectral. Significant progress has been made
over the past three decades in all the domains. Three decades ago, for example, remote
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Figure 2. The first two rows in this figure show the distributions of the input
data at 500 m resolution and at 250 m resolution. The third panel on the left
shows the distribution of Channel 6 at 500 m resolution. The remaining three
panels show the estimated distributions for Channel 6 at 250 m resolution
using Gaussian process (GP) regression, bagged neural networks, and a linear
model respectively. The Kullback-Leibler distance between these distributions
and the true distribution shows that the GP regression performs the best.

sensing scientists were happy with data collected in four wavelengths, once every 16 days at
79m spatial resolution. Now orbiting satellites collect information nearly daily at 250-1000m
in 36 wavelengths. Similarly hundreds of instrumented towers around the globe collect data
every few minutes in support of verifying satellite data or for use in global climate change
research. Operating these instruments continuously is a challenge. Similarly dealing with
enormous volumes of data poses another set of problems that the community has not grappled
with. We believe research on virtual sensors has the potential for contributing in a number
of areas of earth sciences.

One such application is in the temporal domain dealing with filling gaps in CO2 flux data
collected at FLUX tower sites around the globe. Gaps are common in these measurements,
as CO2 instruments need to be calibrated frequently, while simultaneously collecting a set
of environmental observations related to CO2 fluxes is much easier and robust. Therefore
training virtual sensors on a full set of observations and using it to fill gaps is highly desirable.

Another area of earth sciences that can benefit from VS is in product generation from
satellite data. Many of the algorithms used to generate geophysical products (Leaf area
index, aerosols etc.) are complex and based on physical principles that need considerable
resources for operational implementation. It is conceivable that one could directly learn
the relationships between satellite data and products, thus simplifying the computational
requirements. Such analysis may also help in determining the contribution or the need for a
certain wavelength in producing a product or a set of products.

On-board processing and re-configurable sensors are two other areas of earth science
research that VS have the potential to play a significant role. Since VS are data-driven
models of a given phenomenon, one could implement such models for on-board processing
so that important events such as detecting volcanoes, algal booms, and floods are detected
early.
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